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This paper describes a flight path assessment process for precision aerobatic manoeuvres.
The work forms part of ‘Flight Coach’, a project providing technological improvements to
pilot feedback and judging in precision aerobatics. An on-board flight logger is used to record
information during a precision aerobatic flight. A template data set representing the flown
sequence is then constructed and aligned to the flight. The template is adjusted to match the
scale of the recorded flight, and a comparative assessment is performed. This work offers
a significant contribution to the sport of precision aerobatics, but also develops tools and
processes that could be applied more widely in areas such as pilot training.

I. Introduction
Precision Aerobatics is a sport where competitors control aircraft through predefined sequences of aerobatic

manoeuvres. A group of judges observe the sequence and provide scores by subtracting points for perceived errors in
the execution of each manoeuvre. The downgrades that judges should apply to different types of error are described in
well established rule books for each aerobatic competition discipline. A common frustration for competitors is with the
ability of judges to apply these rules consistently. Automating the assessment of precision aerobatic manoeuvres has the
potential to transform the sport, whilst the methods developed as part of the solution can make significant contributions
to the wider community. The Flight Path Assessment (FPA) process described in this paper forms part of Flight Coach
[1]. Flight Coach provides data driven tools to precision aerobatic pilots and judges with the aim of reducing subjectivity
in the scoring.

Among the wider applications of the FPA process, a central one is machine learning based flight control, which
is attracting growing interest. For example, the work in [2] demonstrates the use of Reinforcement Learning (RL) to
train a flight controller to perform an agile perched landing manoeuvre. In the case described in the paper the desired
outcome, and so the reward function, is clearly defined by the objective. On the other hand [3] describes autonomous
aerobatic manoeuvres performed with a rotary wing UAV, where a reward function is derived through trajectory learning
from a number of flights performed by an expert human pilot. Imitation learning limits the performance of the trained
controller to that of the expert pilot and is not desirable for an automated scoring system as the expert pilots influence
could be considered a potential source of bias. The work in [4] generates template trajectories by numerically solving
optimal control problems. These optimal control problems are generally solved by saturating certain parameters and so
are inherently high risk. By calculating reward from standard manoeuvre definitions the FPA process has the potential
to offer a safer, albeit less optimal approach. Additionally, the FPA process offers an alternative to a direct trajectory
deviation reward, as it can allow the trajectory to vary whilst still meeting higher level criteria.

Part of the FPA process involves recording and labelling flight data using a temporal alignment algorithm. The data
is unique to precision aerobatics as many repeat attempts at pre-defined schedules are available. This has the potential to
make a significant contribution to Flight Regime Recognition (FRR), a well researched area for military aircraft and
helicopter load estimations for fatigue analysis. The work in [5] shows that FRR using low cost flight data recorders is
an effective method of estimating loads on aircraft components, and can even be preferable to directly mounting strain
sensors on the component being analysed. A variety of methods are used for FRR, a common one is to train a neural
network with labelled training data to predict the regime based on state observations [6].

The FPA process has a potential application as a debriefing tool for use in pilot training. Various pilot performance
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metrics derived from instrumented pilot proficiency check flights are used in [7] to augment subjective scoring by flight
instructors. The paper highlights the limitations of a human evaluators quantitative observation capabilities and the
labour intensive nature of the one to one evaluator-evaluatee ratio. The Flight Coach Plotter is a free web app developed
as part of the Flight Coach project which is already receiving significant uptake by aerobatic pilots for its presentation of
objective post flight feedback. A view of the flight coach plotter, displaying some recorded manoeuvres from the F3A
P23 aerobatic sequence is shown in Figure 1

Fig. 1 Extract from the Flight Coach plotter

Some work already exists on electronic judging aids, such as [8], where the applicability of a data logging system
aimed at general aviation safety was discussed. The FPA process described here follows a similar approach, but instead
uses widely available, low cost UAV flight controllers running open source firmware for its data logging device. This
allows the system to be adopted more quickly as well as allowing the developers to focus on post processing the flight
data using open source tools.

The work in this paper is based on flight logs recorded using a UAV flight controller running ArduPilot firmware [9]
mounted in a model aircraft performing the F3A P21 aerobatic sequence [10]. The flight logger records a time history
of state information that is compared to an artificially generated template set of data constructed from the sequence
definition. Temporal alignment of the two time series is performed to identify the individual manoeuvres, and the
primitive elements that make up each manoeuvre, within the flown data. This segmentation of the recorded data allows
the grading criteria applicable to each manoeuvre and element to be applied.

The objective of this work is to record a sequence of manoeuvres flown by an aerobatic aircraft, then to align and
compare them to a generated template set of data based on the sequence definition. The aircraft and systems used to
record the flight data is described in Section II. The sequence used for the study and the process of generating the
template data set is described in Section III. The temporal alignment process is discussed in Section IV. Section V
describes the process of constructing a new, scaled template based on the aligned data-set and exposing the comparisons
for grading.

II. Flight Data Recording
Flight data was recorded using a Pixhawk 4 mini UAV flight controller running ArduPlane firmware [9], with a

Ublox M8N external GPS and Magnetometer. In order to reduce impact on the aircraft the flight recording system was
powered by a dedicated supply with no connection to the flight critical systems. For the same reason no pitot tube was
used and airspeed information was estimated by the ArduPilot firmware. Competition rules do not allow any hardware
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associated with feedback control to be present in the aircraft, so all flight logging systems mounted in aircraft that are
used for competition need to be easily removable. The aircraft used to record the data presented in this paper is shown
in Figure 2. This is a typical F3A aerobatic aircraft; span 1.85 m, length 2 m, weight 4500 g and powered by a 3.4 kW
electric motor. Figure 3 shows a visualisation of the example section of P21 sequence recorded with the aircraft. The
data is visualised in a 3D plot with red and blue lines representing traces of port and starboard wing tips, along with
mesh representations of the aircraft position and orientation at regular time intervals.

Fig. 2 Aircraft used for example data acquisition

The ArduPilot log is parsed and the relevant position, orientation, body axis rates, body speeds and accelerations
are extracted or calculated as necessary. The recorded position and attitude data is rotated to a standard coordinate
frame that is used throughout the process. The sequence frame is defined with the origin on the pilot position, Y axis
to the pilots right, parallel to the maneuvering plane and Z axis up. The transformation between the ArduPilot home
coordinate frame and the sequence frame is calculated based on the GPS data recorded in the log and a predefined flight
line, which positions the aerobatic box in the world.

The visualisations of the recorded data shown in this paper are based on three manoeuvres from a recorded F3A P21
sequence. F3A is a discipline governed by the Fédération Aéronautique Internationale (FAI) and is the principal Radio
Control (RC) aerobatic discipline. The Flight Coach project offers potential for the collection of considerable amounts
of data from hundreds of different pilots of different standards, flying different sequences, aircraft types and competition
disciplines. Already we have over 100 pilots using the plotter from at least 14 different countries.

III. Template Data Generation
Aerobatic manoeuvres are referenced for competition by the FAI in the Aresti catalog [11]. Figures from the catalog

are assembled into a sequence according to the competition rules. Generally a competition sequence is used for all
competitions within a discipline for a period of one or two years. In some cases ’unknown’ sequences may be written
specifically for a competition and given to the pilots on the day to ensure that they they do not have the opportunity
to practise the manoeuvres. The figure sequences are typically provided to competitors as a series of Aresti catalog
numbers alongside a set of diagrams using Aresti notation, a graphical notation for aerobatic figures. Figure 4 shows an
extract of the Aresti sequence definition and Figure 5 shows a visualisation of the constructed template dataset for the
first three manoeuvres of the F3A P21 sequence.

While relatively easy for humans to understand, the graphical nature of Aresti notation makes it challenging to use in
a computer directly. Michael Golan developed One Letter Aerobatic Notation (OLAN) to provide a compact, text-based
representation of a figure sequence and some associated layout information to use for encoding Aresti diagrams. At
present, the notation is designed for full-scale aerobatics and future work is required to expand the OLAN notification to
include all possible manoeuvres in the model aerobatic disciplines. The OpenAero project has developed a web-based
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Fig. 3 Visualisation of actual flight data for the first three manoeuvres of the P21 sequence

 Class F3A, Annex 5A – Description of Manoeuvres 
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Fig. 4 Extract from the Aresti diagram for the F3A P21 aerobatic sequence [10]

tool [12] to generate and edit Aresti notation diagrams. This effectively serves as a graphical interface to edit OLAN
strings.

Once the OLAN string for a sequence is obtained, it can be handled more easily by a computer. In our work, a
library of figure definitions and some post-processing is used to parse the OLAN string and generate a series of primitive
elements that together define the sequence. The primitive elements are one of:
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Fig. 5 Visualisation of the template data set constructed from the sequence definition

• Line, for a straight line of a given length
• Loop, for a constant arc initiating with body frame pitch or yaw rotation of the prescribed radius and angle
• Spin, for upright or inverted spins, these begin on a horizontal line and end on a vertical down-line
• Stallturn, for stall turns or wing-overs, These begin on a vertical up-line and end on a vertical down-line
• Snap, for positive and negative snap rolls
Some primitives have associated data; for lines the length is specified, for loops the radius and proportion of a full

loop to perform are specified. The Line, Loop, Snap and Spin primitives may also have a number of rolls that can
be integrated through the element. The Loop primitive will not maintain its Knife-Edge or conventional state for the
duration of the element if the roll parameter is non-zero.

With a series of primitives generated from the OLAN string, the next step is to create data points that represent
the ideal aircraft state throughout the sequence. This state includes the aircraft position, attitude, velocities, axis rates
and accelerations. The data is constructed in an idealised judging coordinate frame, for most elements this is similar
to the wind axis, but with the G-axis aligned with the direction of flight rather than the oncoming wind vector. Flight
data generation methods cover the Loop and Line primitives, creating data points based on the elements associated
data, initial aircraft position, orientation and airspeed, which is interpreted as a constant velocity in the G-axis. The
number of rolls specified for the primitive element are superimposed on the constructed data with new attitudes, axis
rates and accelerations being calculated for each point. The stall turn primitive is constructed through pure body frame
yaw rotation with no forward velocity. The snap roll and spin primitive elements are more complicated than lines, loops
and stallturns as the judging criteria put additional constraints on the attitude of the aircraft. The assumption that the
wind axis is aligned with the body axis and that there is no wind must be broken in order to represent them satisfactorily
according to the judging criteria.

The rules for all precision aerobatic disciplines require snap rolls to display a visible pitch departure from the
direction of flight prior to, or coinciding with the start of an auto-rotation, where the aircraft rotates around an axis
that remains aligned with the velocity vector. During a snap roll one wing should be stalled, whilst the other remains
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lifting, so the the motion is dominated by a very fast roll rotation. Figure 6 shows a comparison of the axis rates and the
calculated angle of attack for a recorded snap roll and the generated template data. The initial pitch rate reflects the
pitch departure, which is followed by a reduction in the pitch rate as the aileron and rudder are applied and the roll and
yaw rotation begins. Finally the pitch rate reverses at the end of the snap to re-align the body axis with the velocity
vector. Some Differences can be seen in the roll rate, where the inertia of the real aircraft causes some lag in initiating
and stopping the roll. The recorded snap also shows that some pitch rate is maintained throughout the auto-rotation,
where it reduces to zero in the template snap. This is because some deviation from the initial flight path is seen in the
real snap which is not represented in the template. These differences are sufficiently small for the template to work both
as an input to the temporal alignment process and as a training tool for pilots and judges.

(a)

(b)

Fig. 6 Comparison of axis rates and angle of attack for the a) flown b) template snap roll primitive elements

Figure 7 compares the axis rates and computed angle of attack values for a recorded spin element and the
corresponding template. The spin is initiated with a nose down pitch rotation as the aircraft stalls. This is followed by
a yaw rotation, then an increasing roll rotation as the spin becomes more axial. As with the template snap element
the template spin reaches the maximum rotation rate slightly earlier than the recorded version due to the simplified
representation. This is acceptable as the relative magnitudes of the axis rates reflect the flight data and so have little
impact on temporal alignment process.

The processes developed to generate the templates include a number of scaling parameters that can be set individually,
according to the sequence or based on measures of the recorded flight data. This process will be discussed in more
detail in Section IV. At this stage they have been set so that plots of the template stay roughly within the aerobatic
manoeuvring zone and are of a similar scale and speed to those recorded in Section II.
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(a)

(b)

Fig. 7 Comparison of axis rates and angle of attack for the a) flown b) template spin primitive elements

IV. Temporal Alignment
The primitive elements are identified in the recorded flight data using Dynamic Time Warping (DTW). A similar

approach is used in [3] and [4] to perform the trajectory alignment. The DTW algorithm is designed for measuring the
distance between two time series, which may vary in the time axis. As well as producing a similarity measure DTW
calculates the best match between two time series and produces a warping path between the two such that every index of
the first sequence is joined to every index of the second. The algorithm works based on the Euclidean distance between
the points, so constant offsets and differences in scale of the time varying parameters are not accounted for. Other time
series alignment algorithms such as [13] offer better results in those cases.

In Precision Aerobatics a pilot must fly manoeuvres as accurately as possible, so as to receive the minimum
downgrade according to predefined grading criteria for each manoeuvre. Whilst meeting these criteria is challenging,
they are not sufficient to entirely constrain the manoeuvre geometry. As such each manoeuvre has a set of parameters
that may be varied without producing a downgrade. These parameters can differ between competition disciplines. As
a result of these variations it is not possible to generate a single template data-set that reflects the error-free flown
geometry of every recorded version of a given sequence. The template sequence must therefore be scaled based on
measurable values from the flight data prior to running the DTW algorithm, or parameters must be selected that do not
vary significantly between flights and do not have zero offsets.

A number of sets of parameters have been investigated for input to the DTW algorithm. Initial results using position
data transformed and scaled so that the template roughly aligned with the recording showed some success. The process
was refined to the point of performing an optimisation with the scaling parameters as independent variables in order to
minimize the DTW distance measure. Whilst this approach showed some success when matching subsets of a sequence
it proved inefficient at aligning an entire sequence due to the large number of independent variables and relatively
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slow evaluation required for each step of the optimization. Faster and more reliable alignments have been achieved by
comparing the body frame roll, pitch and yaw rates of the recorded data to those of the template. These variables work
better because a constant offset is not required and they can easily be scaled globally based on measurements of the flight
data. Figure 8 shows the roll, pitch and yaw axis rates for the template and flight data. As the majority of roll directions
in the sequence are at the pilots discretion the matching is performed based on the magnitude of the roll and yaw rate.

(a)

(b)

Fig. 8 Axis rate parameters used for temporal alignment for the three example manoeuvres extracted from a)
the constructed template b) actual flight data

Figure 9 shows a visualisation of the output from the temporal alignment process. The lines represent the recorded
Centre of Gravity (CG) trace of the aircraft through the three manoeuvres used in the example. The labelling of
manoeuvres and elements is illustrated with discrete colouring of the lines. Each manoeuvre is separated by a short
section of horizontal line, this is included at the start of the following manoeuvre as a Line primitive element.

The DTW algorithm works on the Euclidean distance between the two input time series. As a result the template
dataset needs to be roughly scaled to match the flight data. The scaling of the baseline dataset for each sequence has
been manually generated to roughly reflect recorded data. This scaling does not necessarily best reflect the axis rates
for all flown sequences, which may be affected by a pilots flying style, aircraft characteristics or the environmental
conditions. The FPA proposes taking preliminary measurements of the recorded flight data to use as parameters for
scaling the templates prior to running the temporal alignment. Two simple approaches for scaling the templates are
assessed in this paper and significant further work is proposed.

The first approach proposed is to measure the recorded axis rate data directly and to set the rate for each type of
primitive element based on a percentile rank of a given axis. Values used for this process are shown in Table 1. These
values have been selected as when applied they produce template data sets that reflect the flown axis rates reasonably
well.
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(a) (b)

Fig. 9 CG trace of the recorded flight data. Coloured segments of line represent automatically labelled a)
manoeuvres and b) primitive elements

Table 1 Axis Rate Scaling

Primitive Element Axis Proportion of Recorded Range
Loop Pitch 90 %
Line Roll 95 %
Snap Roll 100 %

Stall Turn Yaw 99.5 %
Spin Roll 99.5 %

The second approach proposed is to take measurements of the average distance from the maneuvering plane to
the pilot and of the average speed of the aircraft during the flight. All the datasets tested were from F3A sequences,
where the manoeuvres must be performed in a box, defined by the intersect of vertical and horizontal 60 degree passing
through the pilot position and the manoeuvring plane. It is therefore possible for an F3A flight to construct a bounding
box for the entire flown sequence from this distance measure alone, and this method could easily be adapted to other
disciplines by direct bounding box measures. The baseline template for sequence was manually constructed so that it
fits within the manoeuvring zone and methods have been written to allow global scaling of the entire sequence. When
the geometric features are scaled the constructed template will have the correct axis rates for a given speed.

To assess the quality of the automated alignments an evaluation process has been developed. The Flight Coach
project [1] provides a convenient browser based plotting tool which allows flight logs to be manually split into individual
manoeuvres. The tool also allows files containing the split information and the flight data to be output. In order to use
this manually split data a number of hurdles were faced. Manually split logs are split on the connecting line between
manoeuvres, where the FPA process uses the convention that this connecting line is part of the following manoeuvre.
The manually split data only goes to the level of individual manoeuvres, whereas the automated temporal alignment
process identifies individual primitive elements. In order to identify the individual primitive elements within the
manually split data an additional temporal alignment process was performed, comparing a template to each manoeuvre
individually. As with the full alignment process, this secondary temporal alignment process is not perfect, but the
alignment algorithm has a significantly easier job and therefore if the differences between the two approaches are small
for a given log then the full approach can be deemed successful.

Forty flights were used for the assessment, featuring four different pilots flying a number of F3A aerobatic sequences
(P21, F21, P23 and F23). The pilots exhibited a range of flying styles and the flights were performed in a range of
wind conditions with different aircraft. The alignment process was considered successful for a given flight if the largest
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difference in the calculated split location between two elements was less than two seconds. In addition to the two
template scaling options the tests were also run with signal whitening applied to the axis rates in an attempt to make the
magnitudes of the features being compared more similar. The results of this assessment are presented in Table 2.

Table 2 Temporal Alignment Assessment Results

Scaling Method Signal Whitening Success Rate
Axis Rates True 15 %
Axis Rates False 15 %

Distance and Speed True 65 %
Distance and Speed False 72.5 %

Table 2 shows that globally scaling the template sequence based on the distance and speed at which the original
flight was flown gives significantly better results. This difference is due to the assumption in the axis rate scaling
approach that the axis rate is constant for a given type of primitive element. In order to fit the sequence within the
manoeuvring zone a pilot must break this assumption, making some loops tighter than others, or adjusting the roll rate
to suit a manoeuvre. The template sequence was constructed to fit within the manoeuvring zone and so takes account
of the decisions on axis rate that a pilot is likely to make. The results also show that signal whitening has a modest
detrimental effect on the alignment success rate. Signal whitening makes the relative magnitudes of the roll, pitch and
yaw rates more similar. In most manoeuvres the yaw rates are very low, and the pitch rates are reasonably low compared
to the roll rates. Whitening the signal increases the contribution of pitch and yaw rates in the alignment, but it also
increases the contribution of the noise in those signals. In addition, any errors the pilot makes and the effect of wind and
flight physics, which have not been accounted for in the FPA process, have the biggest impact on the pitch and yaw rates.

V. Path Assessment
The next stage in the development of the FPA process is to build a metric with which to assess the deviation from

the flown path. All the major aerobatic competition disciplines define rules describing how this should be performed by
a judge watching the flight in real time. In all cases judges start with a score of ten for each manoeuvre and subtract in
half point intervals to a minimum of zero. Downgrades may be applied purely for mistakes within an element or at
the manoeuvre level, by comparing the relative sizes of flown elements or overall positioning. The exact downgrades
applicable to specific deviations may differ between disciplines.

In addition to the distinction between manoeuvre and element level downgrades, a categorisation can be made at
the element level between those downgrades that apply to the flight path of the aircraft and those that apply to the
orientation. For the loop and line primitive elements the downgrades applicable to the orientation consider only the error
in roll angle. For the snap and spin primitive elements the pitch angle is also used as an aid to assessing whether the
aircraft has stalled and some aspects of the flight path grading criteria are relaxed. Aerobatic sequences are constructed
primarily from combinations of loop and line primitive elements, so the following discussion will focus on those. The
enumeration below summarises the grading process for the loop and line primitive elements. This is not an exhaustive
list, but is sufficient to demonstrate the judges workload and the kind of analyses that need to be catered for within the
FPA process.

1) Flight Path
1) Angle

For line elements, and in the axial direction of loop elements, downgrades are applicable for angular
deviations from the desired flight path. These vary between disciplines, but are generally between 0.5 and
9 marks for up to 90 degrees in heading error.

2) Loop Diameter
For loop elements flight path downgrades are applicable for perceived variations in the diameter of the
loop. These vary from 0.5 or 1 mark for a visible deviations, to a maximum of 4 marks for severe (greater
than 2 to 1) deviations. Some disciplines provide additional tools to judges to simplify radius assessment
such as fixed downgrades for small visible straight regions in a looping element.

2) Orientation
1) Roll Angle
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For all disciplines downgrades between 0.5 and 9 marks are applicable for angular deviations in roll angle
up to 90 degrees.

2) Roll Rate
Variations in roll rate, when a roll is specified in a roll or loop element, are down-gradable by 0.5 or more
marks per occurrence, depending on the severity.

3) Manoeuvre
1) Roll Positioning

Where a roll is integrated on a line, between two other non-rolling line elements the roll should be centred.
Errors in roll positioning are down-gradable by 0.5 or 1 marks, up a maximum of 3 or 4 marks where no
line is present before or after the line.

2) Loop Diameter
In some cases looping elements within a manoeuvre must share the same radius, downgrades of 0.5 or 1
marks for visible differences, with more marks being taken for major deviations.

3) Positioning
In some cases the overall position of a manoeuvre may be applicable, either by centering in front of the
pilot or fitting within the edges of the aerobatic box.

The main challenge associated with assessing the quality of a flight path is in constructing a comparison to the ideal
geometry, rather than in applying the downgrades listed above to that comparison. The most important output of the
FPA process is therefore the exposure of an environment within which the grading criteria can be applied.

The temporal alignment process has identified the section of data corresponding to each primitive element in the
sequence definition. The elements can then be accurately scaled based on measurements of the data that has been
attributed to them. For line elements, this is the length of the line in the direction parallel to the corresponding template
geometry. For loop elements the plane and proportion of loop are corrected and the radius is measured by fitting a circle
to the projection of the recorded data on the corrected plane. Where rolls are integrated within a line or loop element
the direction is identified by taking the sign of the mean body frame x axis rotational velocity.

Figure 10 shows a 3D visualisation of a comparison between a recorded loop element and template scaled to match
the pilots intent. The starting position of each template primitive element is shared with the recorded data, but the end
positions may not match if there are errors in the flown geometry. This results in the discontinuities in the template track
between primitive elements.

Figure 11 shows the key results of the primitive element level analysis of the FPA process for the 7/8 loop primitive
element from Figure 10. The loop radius, heading error and roll angle error are plotted against radial position around the
loop. The loop radius is calculated by taking the distance to the centre of the loop, rather than by calculating the actual
instantaneous radius at each point. This is the simplest approach, but future work is required to assess whether this best
reflects the approach a human judge follows. In the loop element analysed here the radius appears to reduce towards the
end, which is in fact caused by a tightening of the loop slightly earlier on. Heading error is calculated by taking the
angle between the body velocity vector and the template loop plane. This reflects the definition in the judging criteria for
all aerobatic disciplines for model aircraft and could be interpreted as three individual deviations of between 7 and 10
degrees. The roll error is calculated by calculating the angle between the flown body frame y axis and the corresponding
template body frame xy plane. Here two discrete roll angle deviations are seen of 15 degrees and 7.5 degrees.
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Fig. 10 Comparison of recorded flight data (blue) to generated template data scaled to match intended flown
geometry (yellow)

Fig. 11 Analysis of a flown loop element
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VI. Conclusions
This paper describes the current state of development of a flight path assessment process for enabling the automated

analysis of precision aerobatic manoeuvre geometry. At this stage the work offers a huge step towards the automation
of judging for precision aerobatic competitions. The work is part of the Flight Coach project [1], which is already
delivering tools that are receiving significant uptake within the aerobatic community. The Flight Coach Plotter is a
free web app for plotting Ardupilot flight logs. PyFlightCoach [14] is an open source python package aimed at post
processing flight data. PyFlightCoach was used to generate most of the figures and perform all the analyses in this paper.

The FPA process takes flight data recorded with a UAV flight controller during an aerobatic flight, extracts sections of
it representing the individual manoeuvres and elements of an aerobatic sequence, constructs a template corresponding to
the equivalent, perfect, flown sequence and presents the data in a way that allows the judging criteria to easily be applied.
The temporal alignment process was shown to work well for 72.5% of a representative sample of flown aerobatic
sequences, but it remains dependent on the quality of the flown sequence and on the template being representative.
Further work is planned to improve the success rate of the alignment process and to formalise an environment which
will be exposed for the encoding of grading criteria.

The methods developed as part of the FPA process have the potential to make wider contributions to work in fields
such as Aerial Robotics and aircraft loads estimation. For machine learning based flight controllers the calculation of
reward based on deviations from parametric template trajectories has the potential to be less risky than the optimal
trajectories used in other work. For aircraft loads estimation the flight data collected in this project is a unique resource
in itself, containing hundreds of repeat recordings of known sequences of manoeuvres. This labelled data could be used
to train a Hidden Markov Model or Neural Network to recognise manoeuvres.
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